10. Классическая (новоевропейская) наука: временные границы; особенности классического эксперимента; механистическая картина мира; особенности ее социокультурного бытия; классическая наука и техника. Становление технического и инженерного образования. Высшие технические школы как центры формирования технических наук
Классическая наука как эпицентр новоевропейской культуры
Классическая наука - это наука, заложившая основы современного типа научного мышления. Фундаментальные признаки классической науки сохраняются, позволяя объединить классическую, неклассическую и постнеклассическую науку в современный тип научного мышления. В. И. Вернадский ведет отсчет современного научного мировоззрения с открытия книгопечатания (в 1450 г.), поскольку с этого времени научное мировоззрение развивалось непрерывно, и уже ничто не могло вернуть его с этого пути. А. Койре, напротив, фиксируют момент ее возникновения как ситуацию разрыва с предшествующим состоянием, как научную революцию, которая произошла в XVI-XVII вв. В пространстве западноевропейской культуры наука начинает играть роль эпицентра, концентрирующего в себе знаковые черты данной эпохи - вера в науку заместила веру в религию. Наука смогла утвердиться в общественном сознании, когда христианское мировоззрение было вытеснено с передовой линии культуры на окраины. Наибольшее воздействие наука оказала на философию. В Новое время философия становится служанкой науки. С новой наукой меняется даже повседневная жизнь людей: если средневековый человек жил в мире приблизительности, в котором отсутствует точность и где пренебрегают строгими количественными характеристиками, то благодаря науке мир приблизительности меняется на мир точности.
Особенности новоевропейской науки и ее основные подсистемы
Классическая наука связана с новыми критериями научности. Г. Галилей и И. Кеплер, Ф. Бэкон и Р. Декарт, И. Ньютон и Д. Вико и другие мыслители XVII-XVIII вв. противопоставляют новую науку старой. Новая наука полагается на опытные основания, ее методом становится эксперимент, позволяющий соединять теорию и факты; она реализует себя как социально значимый вид деятельности, является контролируемой и проверяемой и вырабатывает отвечающий всем этим характеристикам особый язык.
Только новоевропейская наука полагается на опыт в строгом смысле слова, и этим опытом является эксперимент. Под экспериментом исследователи (В. И. Вернадский, М. Хайдег гер) понимают такой образ действий, который руководствуется положенным в основу законом (идеей, гипотезой, проектом) и нацелен на выявление фактов, подтверждающих или опровергающих его. Связанность эксперимента с фактами придает ему характер такой же непосредственной действительности, какой обладают сами факты. Научный эксперимент в естественных науках проводится с помощью приборов и инструментов, в социально-гуманитарных науках он основывается на источниках, позволяющих в ходе их критики добывать факты. Так, Д. Вико в работе “О научном методе нашего времени” ратует за единство в исторических исследованиях теории (“идеального проекта”) и фактических данных, таящихся в исторических документах.
Объект изучения в новоевропейской науке
Объектом изучения в новоевропейской науке становится сама действительность. Действительное входит в науку через ее предмет, новая наука исследует предметные отношения и зависимости. Ни в средневековой, ни в античной науке изучаемое не представало в виде предмета и предметных отношений. Наука фиксирует внимание на таких характеристиках предметов и событий, которые могут быть объективно исследованы, многократно воспроизведены и проконтролированы. Те или иные области знания становятся науками, когда формируется их предмет исследования. Это сложный процесс. Вернадский писал о становлении предметных областей наук так называемого описательного естествознания - целое столетие ушло на то, чтобы ученые смогли выявить предмет изучения в метеорологии, климатологии, геологии и др. Подобные сложности характерны не только для естествознания, но и для наук о человеке: гуманитарный мир либо объяснялся как природный мир, либо вообще выводился за рамки науки.
Классическая наука представлена разными областями знания
В Новое время механика из искусства превращается в науку и становится одной из главных наук, поскольку и природа, и человек трактуются как машина, как механизм. Особое место принадлежит математике - ведь книга природы написана на ее языке. Астрономия, отвечая духу Нового времени, стремится привести свои теории к близкому совпадению с данными наблюдений. Физика - очень важная область классической науки, особая роль в ее создании принадлежит Ньютону. На протяжении классического периода физика раскрывала движение, свет, звук, тепловые, электромагнитные и другие явления и процессы, полагаясь на данные эксперимента. В химии появляются теории, обосновывающие экспериментальные данные и факты, поставляемые химической практикой; одна из наиболее известных теорий - теория флогистона (Г. Шталь). Но революцию в химии совершил А. Лавуазье. При объяснении окислительно-восстановительных реакций он основывался на кислороде и признал важность количественных отношений взаимодействующих веществ. Основой научной химии стало понятие элемента, введенное им, а также его работа по созданию новой химической номенклатуры - языка химии. Науки о живом данного периода объединяют понятием “естественной истории” (“История природы птиц” Белоне, “История рыб” Уиллоуби и Рея, “Естественная история четвероногих” Джонстона и др.), а Вернадский называет их “науками о порядке” (работа К. Линнея “Система природы” оправдывает это понятие). Они базируются именно на научном наблюдении - оно оговаривается особыми условиями, с необходимостью присутствует активная позиция натуралиста, а наблюдаемые факты подстраивают под предположение о существовании в живой природе порядка; объект изучения фиксируется количественными параметрами. Если называть области знания о живом, пользуясь современной терминологией, то это ботаника, зоология, анатомия, физиология и, конечно, медицина. Подобный же ориентир, как свидетельствует Д. Юм в “Трактате о человеческой природе”, берут и науки о человеческой природе (или моральные науки); самого себя он видел в статусе Галилея или Ньютона, поскольку сумел, как он считал, найти опытно-экспериментальные основания данной области знания.
В классической науке выделяются области знания, в которых закономерности выявляются индуктивным путем. Ярким примером таких наук как раз и являются науки о живом (ботаника, зоология, анатомия и д р.). Другой этаж здания составляют науки, объект исследования которых конструируется дедуктивным путем, через построение теоретических или математических моделей. Математика, механика, физика - яркий пример наук теоретического уровня. Индуктивный и дедуктивный способы построения научных теорий нашли свое оправдание в философских концепциях эмпиризма и рационализма.
Картина мира новоевропейской науки
Научная картина мира (НКМ) - это знание, выходящее за пределы частных наук, представляющее фундаментальные положения о мире, на которых выстроены законы всех областей классической науки, а также то, что от лица науки входит в культуру и общественное сознание.
Последовательная цепь астрономических новаций
Коперник помещает в центр мира вместо Земли Солнце; Кеплер математически представляет открытие Коперника и совершает переход от теории кругового движения планет к теории эллиптического движения; Галилей объединяет земные и небесные тела одними и теми же законами; Ньютон своей теорией все мирного тяготения завершает этот процесс. Тем самым радикально меняется образ мира. Эти революционные изменения А. Койре оценивает как “распад космоса”: ранее существовавшая иерархическая структура мира, в которой выделялись качественно разнородные уровни бытия - небесный и земной миры (где первый наделялся признаками совершенства), исчезла. Вселенная безгранична и бесконечна, она подчиняется одним и тем же законам. Как отмечает А. Койре, Космос был заменен на Универсум.
В классической науке формируется механистическая картина мира
Мир в призме механики состоит из материальных тел (земных и небесных), им присущи пространственные и временные характеристики, они находятся в движении. Взаимодействие между телами осуществляется через силы притяжения и отталкивания. Материальные тела, в свою очередь, состоят из атомов. Движение понимается как процесс пространственного перемещения тел, а не как некое их внутреннее состояние. Математизация пространства означает, что оно утрачивает качественные и конкретные свойства, становится количественно исчислимым, абстрактным и формальным. Специфическая природа тел не влияет на законы классической механики в целом. Поэтому фундаментальным для механики является понятие “материальной точки”, которая отвлекается от всех телесных признаков.
Законы механики выражены в виде математических зависимостей
В классической науке становится возможной не только математическая астрономия, которая существовала уже в античной науке, но и математическая физика.
Лаплас: “Опыт философии теории вероятностей”
Лаплас в работе “Опыт философии теории вероятностей” сформулировал принцип, который получил название лапласовского детерминизма. Суть его заключается в том, что можно обнять в одной формуле все происходящее в мире; он исключает в мире какую-либо случайность, в нем все необходимо и только необходимо, случайно лишь то, что еще не познано разумом. Поэтому и возможна такая математическая модель, которая позволяет однозначно вычислять прошлое или рассчитывать будущее. Итак, в классической картине мира причинность трактуется по принципу абсолютного (= жесткого) детерминизма. Лапласовский детерминизм - это есть механическая форма причинности.
Составляющие части мира (элементы)
Составляющие части мира (элементы) понимаются как естественные объекты. Естественное в данном случае означает противоположное сверхъестественному. Новоевропейская наука любым событиям находит естественные причины, а все, что не носит такого характера, отвергается. Естественные причины, естественные объекты, естественные факторы действуют не только в условиях Земли, но и за ее пределами. Научная картина мира постепенно освобождалась от идеи Бога. Еще Ньютон допускал непосредственное Божественное вмешательство, полагая, что естественных причин недостаточно; и такие фундаментальные положения его механики, как закон всемирного тяготения и сила тяжести, еще связаны с данной идеей. Картина мира как состоящая из естественных объектов, объяснение которым дается на основе исключительно естественных причин, утверждается к середине XVIII в.
Таким образом, в классической картине мира мир предстает как совокупность естественных объектов, взаимодействующих на основе естественных причин. Этот мир самодостаточен. В категориальном плане самодостаточность мира выражается понятием “система”, ведь ее существование и активное состояние зависят от процессов, происходящих внутри системы.
Всеобщий характер механического объяснения
Принцип механического объяснения включает два момента: во-первых, все возможные явления мира моделируются как некие разновидности машин; во-вторых, все сферы реального и идеального мира функционируют по законам механики. Для Декарта мир - это огромные механические часы, а человек для него - это “земельный механизм”, созданный Богом. Лейбниц рассматривал живые тела как “естественные машины”, которые в самых своих наименьших частях продолжают оставаться машинами. Механицизм проникает и в толкование человеческого разума. Тот же Лаплас полагал, что в чувствах происходят разные движения-колебания, которые подчиняются законам динамики: сложные идеи образуются из простых, а колебания между противоположными побуждениями подчиняются принципу равновесия сил.
Таким образом, фундаментальными положениями картины мира классической науки являются механицизм, математизируемость, детерминизм (лапласовский), естественный характер объектов, причин и факторов, входящих в нее.
Социальный статус и этос классической науки. Человек науки
Если задаться вопросом, кем был человек науки, то надо отметить, что шел процесс отделения научно-исследовательской деятельности от других видов духовной активности (в сфере искусства, религиозного служения), а также в сферах юридической, медицинской, государственной деятельности и пр.; не редко это был процесс трансформации квазинаучной деятельности (как, например, в случае астрологов) в собственно научную.
Социальный институт средневековой учености - университеты - не был местом, пригодным для научно-исследовательской деятельности нового типа. Наука развивалась в основном вне университетов. На протяжении XVII-XIX в в. появляются такие формы организации научной деятельности и научных сообществ, которые становятся адекватными целям и задачам новой науки. В их ряду в первую очередь должны быть названы академии. Они создавались для точного опытно-экспериментального изучения человека и природы, для социально контролируемых исследований, пригодных для жизни людей. Стремление изучать явления, не полагаясь ни на какие авторитеты, а опираясь на факты, опытные данные и доказательства, находило отражение в девизах первых академических сообществ: “Проверяй и перепроверяй”, “Не верь ничьим словам” и т. п. С этой установкой в Новое время создавались академии по разным областям знания (живописи и скульптуре, истории, литературе и словесности, медицине, изящным искусствам), но доминирующее положение занимали академии естественных наук. Так, знаменитая английская академия в период своего создания (1660) получила название “Лондонское королевское общество развития естественных наук”. Была создана также Французская академия наук (1666); Санкт-Петербургская академия наук была основана в 1724 г. по указу Петра I; Национальная академия наук США была создана в 1863 г., она также возникла из сообществ любителей науки.
Помимо академий и учебных заведений нового типа, в классический период возникали разнообразные формы научных сообществ, учреждений (наподобие Бюро долгот (1795) или Палаты мер и весов), экспедиций, конференций, съездов, публикаций и других способов коммуникации, которые были востребованы новой наукой и отвечали ее целям. Постоянно росло количество обсерваторий, лабораторий (наподобие Кавендишской физической лаборатории (1874)), всевозможных музеев (анатомических, геологических, этнографических и др.), ботанических садов, библиотек и пр., без которых научно-исследовательская деятельность попросту была невозможна. Стали появляться так называемые отраслевые научные сообщества, как-то Московское общество испытателей природы (1805), Союз немецких естествоиспытателей и врачей (1822), Союз русских естествоиспытателей и врачей (1859); возникла сеть научно-исследовательских институтов и мн. др.
Связь классической науки с техникой
Классическая наука оказалась неразрывно связанной с техникой своего времени, о чем свидетельствует развернувшаяся в классическую эпоху научно-техническая революция (ХVIII-ХIХ вв.). Под техникой будем понимать совокупность средств (механизмов, машин), опосредующих отношение человека к миру с целью замены его (человека) как материального, энергетического и информационного источника действий.
Самый длительный этап в развитии техники был связан с тем, что создавали механизмы, заменяющие лишь физическую силу человека силой животных, огня, воды, ветра, натяжения и пр., поэтому они и не требовали особых расчетов. Этот период длился почти до ХVIII столетия. Постепенно шла замена ручного труда машинами в разных сферах деятельности (в текстильном и горнодобывающем производстве, сельском хозяйстве, на транспорте и др.), что привело к возникновению и развитию машиностроения. Разнообразие всевозможных механизмов к концу ХVIII ст. приближается к 200-м. Благодаря такому взрывообразному развитию техники начинает радикально меняться среда обитания сначала европейского человечества, а затем и жителей Земли в целом. И этот процесс начался в ХVIII-ХIХ вв.
Взаимовлияние науки и техники во многом определило те специфические черты, которые отличают науку и технику рассматриваемого периода.
Техника, построенная на обыденном знании и навыках, радикально отличается от технических изобретений, основанных на науке. По оценке А. Койре, внедрение науки в технику оказалось возможно, когда новоевропейская наука смогла математизировать природу и мир приблизительности сменился на мир точности. Ведь научная революции позволила описывать с помощью математики не только небесные, но и земные явления.
Тенденция внедрения науки в технику дополняется обратным процессом - технизацией науки, поскольку научные исследования напрямую зависят от их технической оснащенности, представленной в разных ее проявлениях.
Эти взаимозависимые процессы. Итак, согласно А. Койре, переход от эотехники к палеотехнике связан с преимущественным влиянием науки на техническое творчество, когда мастерство и умение оказываются зависимыми не от проб и ошибок изобретателей, а от строгости и точности научно-технических расчетов. Современный этап он квалифицирует как неотехнику, которой свойственно срастание и неразрывность научного и технического творчества, и есть основания говорить о научно-технических феноменах, в которых трудно отделить научную от технической составляющей.